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he potential for biases being built into algorithms has been known for some time (e.q.,

Friedman and Nissenbaum, 1996), yet literature has only recently demonstrated the

ways algorithmic profiling can result in social sorting and harm marginalized groups

(e.g., Browne 2015; Eubanks 2018; Noble 2018). We contend that with increased al-

gorithmic complexity, biases will become more sophisticated and difficult to identify,
control for, or contest. Our argument has four steps: first, we show how harnessing algorithms
means that data gathered at a particular place and time relating to specific persons, can be used
to build group models applied in different contexts to different persons. Thus, privacy and data
protection rights, with their focus on individuals (Coll, 2014; Parsons, 2015), do not protect from
the discriminatory potential of algorithmic profiling. Second, we explore the idea that anti-discrim-
ination regulation may be more promising, but acknowledge limitations. Third, we argue that in
order to harness anti-discrimination regulation, it needs to confront emergent forms of discrimi-
nation or risk creating new invisibilities, including invisibility from existing safeguards. Finally, we
outline suggestions to address emergent forms of discrimination and exclusionary invisibilities via
intersectional and post-colonial analysis.
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Algorithmic profiling

The data revolution has been driven by rapid innovation in “ubiquitous computing” which some
claim has resulted in widespread “datafication” of the “surveillance society” or “information
civilization” (Matzner, 2014; Dencik, et al.,, 2016; Lyon, 2007; Zuboff, 2015). Central to this is the
exponential increase in data, expanded surveillance to gather more and more of it, and dynam-
ic new ways to analyse it (Kitchin, 2014). Algorithmic profiling is a way of detecting patterns,
and making predictions on the basis of them. This occurs in a range of contexts including in-
surance, finance, differential pricing, education, employment, marketing, governance, security,
and policing (Stalder, 2002; O’'Neil, 2016; Ferguson, 2017). More specifically, we understand
algorithmic profiling® as a method of inferential analysis that identifies correlations or patterns
within datasets, that can be used as an indicator to classify a subject as a member of a group
(Hildebrandt, 2008; Schreurs et al., 2008).# These categories are formed from “probabilistic
assumptions” (Leese, 2014: 502) that are de-individualised (Schermer, 2013). A decision for a
loan application may not be made on the basis of individual risk of default, but on the basis of
postcode or neighbourhood, that may operate as an indirect proxy of other indicators such as
the socio-economic or racial composition of one’s neighbours. This leads to concerns about
social sorting and discrimination.

Social sorting and discriminatory potential

Algorithmic profiling may result in social sorting and other discriminatory outcomes (see e.g.,
Lyon, 2003; 2014; Parsons, 2015). Research in Australia (Mann and Daly, 2019) and North Amer-
ica (Browne 2015; Eubanks 2018; Pefia Gangadharan 2012; Noble 2018; Sandvig et al 2016),
demonstrates how algorithmic profiling targets marginalized groups, such as racial minorities,
individuals of low socio-economic status, and women. Browne (2015) argues that algorithmic
profiling perpetuates hierarchies predicated on the enmeshing of identity characteristics. Dis-
criminatory practices become self-enforcing with feedback loops as datasets are construct-
ed that disproportionately contain data about certain people, leading to over-monitoring and
over-policing of those groups (see e.g., Ferguson, 2017). Importantly, discriminatory effects
also occur if data on discriminatory features like gender, race, ethnicity etc. are not directly
processed.® In fact, algorithmic profiling can easily identify “proxies’, i.e., combinations of input
data which are accurate predictors for the discriminatory categories (Harcourt, 2010; Kleinberg
et al, 2016). This illustrates that the data which are used, as well as implicit assumptions while
programming (and training in the case of machine learning algorithms), carry discriminatory
potential (Campolo et al., 2017).

1 We acknowledge the excellent research assistance provided by Ms. Harley Williams, and QUT for financing Harley's contri-
bution via the Vice-Chancellor’'s Research Fellowship awarded to Monique Mann. We would like to thank Associate Professor
Peta Mitchell, Dr lan Warren, Dr Angela Daly and the three anonymous reviewers for their helpful comments on previous ver-
sions of this article.

2 Corresponding author: monique.mann@deakin.edu.au

3 Profiling can be inductive or deductive, or a combination of both. Inductive profiling relates to the generation of profiles (as
testable hypotheses), while deductive profiling is concerned with testing profiles on datasets to confirm hypotheses.

4 According to Article 4 of the General Data Protection Regulation (GDPR) ‘profiling’ means any form of automated processing
of personal data consisting of the use of personal data to evaluate certain personal aspects relating to a natural person, in
particular to analyze or predict aspects concerning that natural person’s performance at work, economic situation, health,
personal preferences, interests, reliability, behavior, location or movements.

5 Direct processing is the processing of information for the specific purposes for which data were collected, according to the
variables or categories of data that were collected. Indirect processing is processing for reasons other than for which data
were collected, and can involve the identification of indirect or proxy relationships between variables or data categories col-
lected, and other categories or variables for which data were not directly collected.
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Data protection and the ‘right’ not to be subject to
automated decisions

Currently, many challenges to algorithmic profiling refer to data protection law, especially the
new General Data Protection Regulation (GDPR) of the European Union (EU), since it contains
dedicated rules for algorithmic profiling that have resonated in academic critique internation-
ally (see e.g. Vedder and Naudts, 2017; Selbst and Powles, 2017, Edwards and Veale, 2017).
We focus specifically on the European Union (EU) due to the recent introduction of the GDPR®,
which replaced the Data Protection Directive (DPD)’, and seeks to regulate the use of personal
data,® and includes a right’ not to be subject to automated decisions (Article 22 of the GDPR).
The GDPR is designed to uphold data protection rights under Article 8 (Protection of Personal
Data)? of the EU Charter of Fundamental Rights. Although this new regulatory regime is gener-
ally regarded as global ‘gold standard’ (see e.g., Buttarelli, 2016; Safari, 2017), there are limits
to the application of data protection law in countering algorithmic profiling and the drawing of
sensitive or discriminatory inferences (see also Wachter and Mittelstadt, 2019). Therefore, we
argue that data protection law may not be a good resource to challenge the problems of algo-
rithmic profiling introduced above. Instead, we show that anti-discrimination may offer a more
promising outlook, however, existing protections should be amended or extended in order to
cope with new forms of discrimination that emerge, or that do not pertain to known protected
identities, but rather represent patterns that have little or no intuitive meaning to human prac-
tice.

There is a lack of consensus as to whether algorithmic profiles, or algorithmic inferences made
about an individual, are considered as personal data. This is because according to Article 4 of
the GDPR,'® information must relate to an identified or identifiable natural person to be con-
sidered as personal data."" Koops (2014) argues that with ongoing technological innovations,
what counts as personal data is becoming obscured, a point also made by Purtova (2018),
who argues the distinction between personal and non-personal data should be suspended.’
Purtova (2018) concludes all data processing with the potential to impact people should trig-

6 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation).

7 Directive 95/46/EC of the European Parliament and of the Council on the Protection of Individuals with Regard to the Process-
ing of Personal Data and on the Free Movement of Such Data.

8  While the primary objective of the GDPR is to regulate personal data, it also seeks to facilitate the relationship between, and
uphold other, fundamental rights. For example, Recital 4 of the GDPR states that the processing of personal data should be
designed to serve mankind [sic]. The right to the protection of personal data is not an absolute right; it must be considered in
relation to its function in society and be balanced against other fundamental rights, in accordance with the principle of propor-
tionality. This Regulation respects all fundamental rights and observes the freedoms and principles recognized in the Charter
as enshrined in the Treaties, in particular the respect for private and family life, home and communications, the protection of
personal data, freedom of thought, conscience and religion, freedom of expression and information, freedom to conduct a
business, the right to an effective remedy and to a fair trial, and cultural, religious and linguistic diversity.

9 Article 8 of the Charter of Fundamental Rights of the European Union affirms that (1) Everyone has the right to the protection
of personal data concerning him or her. (2) Such data must be processed fairly for specified purposes and on the basis of the
consent of the person concerned or some other legitimate basis laid down by law. Everyone has the right of access to data
which has been collected concerning him or her, and the right to have it rectified and (3) Compliance with these rules shall be
subject to control by an independent authority.

10 According to Article 4 of the GDPR ‘personal data’ means any information relating to an identified or identifiable natural person
(‘data subject’); an identifiable natural person is one who can be identified, directly or indirectly, in particular by reference to an
identifier such as a name, an identification number, location data, an online identifier or to one or more factors specific to the
physical, physiological, genetic, mental, economic, cultural or social identity of that natural person.

11 See further Article 29 Data Protection Working Party, ‘Opinion 4/2007 on the Concept of Personal Data; 01248/07/EN WP 136

12 This is because developments in the Internet of Things (IoT), hypoconnectivity and automated data processing are likely
to render "absolute and irreversible anonymity” impossible, thus meaning binary differentiation between identifiable and
non-identifiable data will become irrelevant (Purtova, 2018).
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ger protection, and at the very least, should be assessed for the likely impact it will have upon
them. Purtova’s argument does not entail that data protection regulations suffice to deal with
all kinds of data, but rather that the blurring of the distinction between personal data and other
data underlines the need for new normative grounds to assess the impact of data processing.
Wachter and Mittelstadt (2019) note the guidance provided by the Article 29 Working Party
provides support for inferences being considered as personal data, particularly if there is po-
tential to impact an identifiable individual's rights and interests. Yet they also point to the con-
flicting decisions of the European Court of Justice that have a more constrained interpretation
of personal data. The consequence is that those impacted by algorithmic profiling may enjoy
limited data protection rights, such as access rights, that in turn may impede their ability to
correct or rectify inaccurate inferences, or assess the lawfulness of data processing (Wachter
& Mittelstadt, 2019)."* Complicating matters further, anonymized data'® can be used as a basis
to construct profiles and draw sensitive inferences. Therefore, “by using data about people
not linked to a particular individual, or by purposefully anonymising data prior to drawing in-
ferences and constructing profiles, companies can thus avoid many of the restrictions of data
protection law” (Wachter & Mittelstadt, 2019: 55).

A significant aspect of the GDPR is that it grants a right’ “not to be subject to a decision based
solely on automated processing, including profiling, which produces legal effects concerning
him or her or similarly significantly affects him or her” (Article 22). This has been subject to
debates. The Article 29 Working Party Guidelines on ‘Automated Individual Decision-Making
and Profiling for the Purposes of Regulation 2016/679’ provide further guidance on the specific
provisions that establish the general prohibition for decision-making based solely on automat-
ed processing. They argue that “interpreting Article 22 as a prohibition rather than a right to be
invoked means that individuals are automatically protected from the potential effects this type
of processing may have.” However, it is also argued that the scope of Article 22(1) is confined
to decisions based solely on automated processing, and does not capture decisions that are
not solely based on automated processing.'® Further, the decision must have legal or similarity
significant effects. There are also a number of exclusionary conditions for which Article 22
does not apply."”

Given the above, there have been calls for entirely new rights to be recognised under data
protection law. Wachter and Mittelstadt (2019) argue for a ‘right to reasonable inferences’ to
be incorporated into the GDPR. This would, in principle, require the data controller to establish
whether an inference is reasonable. A key limitation of this proposal is that it does not spe-
cifically relate to managing differential treatment or discriminatory outcomes on the basis of
sensitive inferences. Therefore, data protection, and suggested improvements such as a ‘right
to reasonable inferences’, may not be an ideal framework for responding to the challenges

13 It should be noted that the guidance and opinions of the Article 29 Working Party are not legally binding.

14 There are also challenges for transparency and notification rights under the GDPR (Articles 13-14) as these rights concern
data collected from the data subject or a third party, and not the creation of profiles, or inferences made by the data controller.

15 Anonymous data is any information that relates to an individual where the individual cannot be identified, see: Article 29 Data
Protection Working Party, ‘Opinion 4/2007 on the Concept of Personal Data; 01248/07/EN WP 136" and Article 29 Working
Party ‘Opinion 5/2014 on Anonymization Techniques 0829/14/EN/WP216.

16 For further guidance on provisions that cover profiling and automated individual decisions-making, including decisions-mak-
ing processes that are solely and not solely automated see Article 29 Guidelines on ‘Automated Individual Decision-Making
and Profiling for the Purposes of Regulation 2016/679.

17 The exclusionary conditions for Article 22 of the GDPR are set out in Article 22(1). These include necessity for entering into a
contract between data subject and controller, authorisation by Union and Member state law to which the controller is subject
to safeguards, and is based on explicit consent of the data subject. See also, Wachter et al., 2017 and Article 29 Guidelines on
‘Automated Individual Decision-Making and Profiling for the Purposes of Regulation 2016/679.
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presented by algorithmic profiling. Questions about the suitability of data protection law inter-
sect with the recent developments in the critique of algorithms that we discussed in the intro-
duction: that is, the problems with algorithmic profiling are not limited to processing personal
information or drawing sensitive inferences. Rather, the impact of algorithmic profiling on the
actions, lives and personalities of profiled persons might derive from input that seems incon-
spicuous from the point of view of data protection, due to the fact that algorithmic profiling
works on classes, aggregates and patterns. This of course falls within a long-discussed limit
of privacy in general, and not just data protection, if understood in an individualising manner.
Gilliom (2007: 122) argues:

“To the extent [..] that the privacy paradigm relies on and maintains the idea of the auton-
omous individual and the idea of surveillance as mere visitation, it risks a massive misrep-
resentation of the full impact of surveillance in our lives. The positioning of extensive and
ongoing surveillance in the modern state promises to recast the citizen into the frames and
terms of bureaucratic analysis and translate our ongoing actions into tactics of compliance,
evasion, and above all, calculation.”

Anti-discrimination rules provide for a shift of focus away from privacy and data protection. As
we argue below, anti-discrimination is a more promising candidate as the fundamental aim of
algorithmic profiling is to discriminate (Hildebrandt, 2008; Gandy, 2010).

Anti-discrimination as an alternative

Given the potential for algorithmic profiling to facilitate discrimination, anti-discrimination law
may provide a more promising avenue for responding. Gellert and colleagues (2013: 61) draw
attention to the important distinction that data protection is concerned with certain actions
(principally data ‘processing’), whereas anti-discrimination relates to an outcome irrespective
of the action/s that led to it. Yet, anti-discrimination protections in contemporary (and future)
data processing contexts may also have limited application due to the difficulties in identifying
differential treatment on the basis of protected grounds, especially when they are abstracted,
or intersectional, or emergent — a critique we extend below by diagnosing problems of applying
anti-discrimination safeguards, and proposing ways of amending them in order to make them
suitable to address the complicated forms of discrimination that arise in algorithmic profiling.

In the EU, both data protection'™ and non-discrimination'® are fundamental rights enshrined in
the Charter of Fundamental Rights of the EU as “regulatory human rights” (Gellert et al., 2013:
61). Article 14 (Protection from Discrimination) of the European Convention on Human Rights
prohibits discrimination on the basis of demographic characteristics, including any possible

18 Article 8 (Protection of Personal Data) of the Charter of Fundamental Rights of the EU, specifically concerns the right to data
protection (and it is upon this right which the GDPR is founded).

19 In the US there is a longer history of anti-discrimination law that emerged from the civil rights movement of the 1960s, al-
though is at present, subject to restrictions, ideological challenge, and legal and political “backlash” (De Burca, 2012: 3). While
in Europe anti-discrimination law is said to be developing and expanding. Despite different histories and cultural understand-
ings of equality, individual freedom, and social welfare, there are similarities in the development and trajectory of anti-dis-
crimination approaches between the EU and the US, with the EU approach being modeled closely on UK anti-discrimination
laws, which were influenced by US law (De Burca, 2012). However, there are distinctions in language between these major
jurisdictions that should be explained: Direct discrimination in the US is known as disparate treatment discrimination, which
is discrimination based on differential treatment according to a protected ground. This type of discrimination differs from the
US model of disparate impact treatment which corresponds to the EU model of indirect discrimination, where an “apparently
neutral rule or practice has a discriminatory effect on a prohibited group” (Marcat-Bruns, 2018: 44).
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‘other status’?® Further, Title Il of the Charter of Fundamental Rights of the EU is dedicated
specifically to equality, and composed of a general provision on anti-discrimination and equal-
ity (Article 21), and provisions for specific demographics such as cultural, religious and lin-
guistic diversity, gender, rights of child, elderly, and persons with disabilities (Articles 22-26).”"
Gellert et al. (2013: 65) argue the specific types of discrimination (i.e., Articles 22-26) represent
“‘a more conceptually refined notion of discrimination” in comparison to the general principle of
equality. Yet, we contend that with respect to the abstracted nature of profiling and the drawing
of inferences, it may not be possible to identify grounds for discrimination as per specific pro-
tected grounds, and that a broader and more diversified approach to anti-discrimination may
be an avenue to explore. This is a point we return to, but first a brief comment on direct and
indirect discrimination is required.

Direct and indirect discrimination

Direct discrimination focuses on situations whereby an individual has been treated unfairly on
the basis of protected grounds, whereas indirect discrimination refers to practices that may
inadvertently or indirectly discriminate (Gellert et al., 2013). Indirect discrimination is difficult
to detect, indeed, it has been argued that “most of the time, persons who have been victimized
[..] will not know precisely if, when, or how they have been discriminated against” (Gandy, 2010:
40). In the context of algorithmic profiling, especially where machine learning is used to cre-
ate new inferential categories, this problem exceeds even the issue of indirect discrimination.
Leese (2014: 504) argues that as “data-driven profiles produce artificial and non-representa-
tional categories rather than actual real-life social groups, the individual is unlikely to notice
when he or she becomes part of a 'risky’ category.”

Thus, algorithmic profiling complicates the notion that a discriminatory outcome can be linked
to a protected identity in a two-fold manner: first by enabling proxies, and second, by using
new categories that have no clear meaning to human interpretation. This is significant in the
context of arguments made by Leese (2014: 505) in relation to “deep-seated epistemological
conflict between an anti-discrimination framework that conceives of knowledge as the estab-
lishment of causality and data-driven analytics that build fluid hypotheses on the basis of cor-
relation patterns in dynamic databases.” This means that “discrimination will not concern any
of the protected grounds, but rather attributes such as income, postal code, browsing behav-
iour, type of car, etc., or complex algorithmic combinations of several attributes” (Gellert et al,
2013: 80). Therefore, it is necessary to identify “whether attributes, and complex algorithmic
combinations of attributes, which do not belong to any of the specifically protected grounds”
may create discrimination (Gellert et al., 2013: 81, emphasis in original). Leese (2014: 500)

20 Article 14 of the European Convention on Human Rights prohibits discrimination through the following: “The enjoyment of
the rights and freedoms set forth in this Convention shall be secured without discrimination on any ground such as sex, race,
color, language, religion, political or other opinion, national or social origin, association with a national minority, property, birth
or other status.”

21 Article 9 of the GDPR contains restrictions on the processing of special categories of personal data (sensitive data) defined
as: "processing of personal data revealing racial or ethnic origin, political opinions, religious or philosophical beliefs, or trade
union membership, and the processing of genetic data, biometric data for the purpose of uniquely identifying a natural person,
data concerning health or data concerning a natural person’s sex life or sexual orientation shall be prohibited.” It should be
noted that special categories of personal data do not include age, financial situation or personal profiles which often form the
basis of discrimination, however non-sensitive data can become sensitive if it is used to make inferences about sensitive data
(as per Wachter and Mittelstadt, 2019). Significantly neither sex nor gender are considered sensitive categories of information
although discrimination frequently occurs along these lines (see Article 4 and Article 9 of the GDPR; Bano, 2018).
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argues that “data-driven forms of profiling produce a distinct form of knowledge that appears
dynamic and implicit, and thus continually escapes the scope of the regulatory legal regime.”
We term these forms of indirect discrimination based on complex combinations and correla-
tions as emergent discrimination; the focus of the final section of this article.

Reconceptualising discrimination

On a very fundamental level, every form of algorithmic judgment could be treated as discrimi-
natory. Profiling aims at making predictions, that is, uses statistical methods or machine learn-
ing to predict pieces of information which are not directly available — otherwise profiling would
not be necessary. Very generally, it looks for differences among people that entail that they are
treated differently. Anti-discrimination asks us to treat people equally despite their differences.

There are challenges for individuals to even identify that they have been subject to differential
treatment on the basis of a protected ground. This is because, for example, an individual de-
nied a mortgage on the basis of their neighbourhood is “not a member of a protected group.
She is a victim, not because of her race, but because of the race of the people that live in,
and help determine the profile of her neighborhood” (Danna and Gandy, 2002: 382). Moreover,
when the aim of the algorithmic system is to identify and manage risks, some outcomes may
never arise: “we must also consider that fact that as system objectives more routinely come to
be framed in terms of the identification, minimization, or management of risks, rather than the
achievement of objectively measured goals or achievements, the consequences of systematic
error will be more difficult to observe and control” (Gandy, 2010: 39). Our main contribution is
the development of new concepts that capture a more precise notion of discrimination and
that enables emergent classifications to be recognised as discriminatory. To that aim, there is
a need to connect with intersectional perspectives, that also do not map so easily onto existing
protected identities.

Intersectional discrimination

Intersectional forms of discrimination have been shown as important expansions to existing
views on discrimination on the basis of one protected ground (Crenshaw, 1989). Intersectional
theory argues that the specific combination of identities, e.g. a woman of color, cannot be un-
derstood in terms of the discrimination that people of color, or women, experience. That is, in-
tersectionality highlights the entanglement of protected identities. In one of the first texts that
defines intersectional analysis, Crenshaw argues that the combined effects of discrimination
(in her case, on the basis of both sex and race) are particular forms of discrimination that are
experienced by people with a specific combination of (protected) identities — and cannot be
reduced to one of its “elements” (Crenshaw 1989: 149). Thus, intersectional theory highlights
the specificity of discrimination: it may be more specific than one protected ground.

With the promise of personalization through algorithms that tie in many more features than
human judgement does, the results become much more specific than just the intersection
of two or three prominent markers. The same is true of emergent discrimination: it might be
much more specific than the intersection of two or more identities. Crenshaw illustrated that
such forms of discrimination are hard to prove statistically, even if they are “just” concerning
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race and gender, as the necessary data might not be available or the statistical populations too
small (Crenshaw 1989: 146). This sensitivity for experiences of discrimination that are hard to
prove statistically, or to be objectified in another manner, are an important insight from inter-
sectional thought, that can be carried over to the analysis of emergent discrimination. The fact
that a large proportion of the populace with a protected feature are processed in a ‘fair’ manner
is no guarantee that discrimination does not take place.

Significantly, algorithmic profiling that facilitates the inclusion of different sources and types
of data is likely to contribute to increasing entanglements of protected identities, thus creating
new categories and groups of people that experience forms of intersectional discrimination.
Intersectional theory has shown that safeguards against discrimination wrongly assume that
all forms of discrimination function similarly or independently. Although intersectional theory
was conceived against the backdrop of US anti-discrimination law, a similar disregard of the
specifics of particular social positions and intersectional identities has been diagnosed for the
EU (see e.g. Verloo, 2006). Algorithmic systems, for which everything is yet another potential
input feature or proxy variable for correlative analysis, might increase that assumption. These
aspects highlight the problems of new forms of discrimination that emerge from complex in-
tersectional combinations of protected grounds, or correlative abstractions from them.

Emergent discrimination

In addition to these more complex intersectional forms of discrimination, completely new
forms of discrimination may emerge. Leese (2014: 504) calls these “non-representational” to
express that these new classes of discriminated people might be formed by combinations of
input features that do not even make sense as the intersectional combination of identities.
That is, both the input and output of algorithmic systems may not have a direct relation to a
protected ground but it might still be the case that an algorithmic system systematically disad-
vantages persons with, say, a specific combination of browsing history, make of the computer,
and favourite bands (for example, Facebook likes). However, it is not clear that this would count
as discrimination. A first rebuttal could be that such outcomes are not discriminatory at all.
Given that the system works well, it tracks existing statistical differences — and if one does not
want to call that discriminatory as explained above, that is just how the system works. After all,
if it could not find any differences, the system would not work. Following this line of thought,
if someone is incorrectly profiled by such a system, and as a consequence suffers from some
form of disadvantage, that would be an individual error, not discrimination. However, discrimi-
nation is not an issue of wrong classifications. In fact, that a system used for algorithmic pro-
filing should be as error-free as possible, is a matter of course. Anti-discrimination safeguards
carry a stronger intuition than protection against erroneous treatment: even if there are differ-
ences in the world, we might better not differentiate along them. Thus, even if the algorithm
in this case was not ‘wrong’ in a narrowly conceived epistemic understanding, applying the
principles of anti-discrimination might mean refraining from using this information to make
discriminatory decisions.

In consequence, the problem is how to single out results that count as discriminatory and

should be avoided. One approach would be the perspective of ‘data justice’ by Dencik et al.
who advocate for a critique that scrutinises “interests and power relations at play in ‘datafied’
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societies that enfranchise some and disenfranchise others, highlighting also forms of exclu-
sion and discrimination” (Dencik et al., 2016: 9, emphasis in original). This shares affinity with
arguments made by Gilliom (20071: 136) who argues that new forms of surveillance, as new
technologies of power, can never be “removed from the ongoing dynamics of political strug-
gle.” Perhaps then what is actually required is further attention to the landscapes of power and
social (in)justice in this new mode of algorithmic governance (Coll, 2014; Leese, 2014; Amoore,
20117). In these landscapes of power, the logic of anti-discrimination corresponds to our insight
that algorithms contribute to the creation of social inequalities. Such changes and modulations
can also be observed regarding emergent categorizations, for example in the application of
profiling for security measures, personal features and relations that are available as input data
(preferences, friendships, family ties) are invested with forms of threat and suspicion (Matzner,
2016). One could imagine that a group of people are regularly singled out by algorithmic pro-
filing for additional screening during travel. That group of people would then be discriminated
not just because they need to spend additional time and resources, but because their identity
as traveller is invested with suspicion. Therefore, new forms of discrimination that emerge with
algorithmic profiling can still be addressed in the spirit of anti-discrimination principles and
protections. But they also ask us to divert our gaze from the algorithmic process and towards
society and to ask: what does it mean that the categories created by the algorithms exist? This
requires a way in which the social and political situation of the people that belong to groups
that are created by algorithms can be assessed. Here, intersectional and post-colonial theories
can provide valuable insights for dealing with such emergent forms of discrimination.

Making exclusionary invisibilities visible

There are differences between the newly emerging forms of discrimination and intersectional
forms, as intersectional theory focuses on identities that are already recognized as a source
of discrimination. Emergent forms of algorithmic discrimination stem from features and indi-
rect proxies that themselves, on face value, seem harmless. However, it is a combination of
such seemingly harmless features that might lead to emergent forms of discrimination. In this
regard, however, parallels become visible. Intersectionality has put the focus on people with
complex identities that suffer discrimination that is not visible from the perspective of simple
singular protected grounds. This is repeated structurally with emergent forms of discrimina-
tion in a more complex way. Thus, remedies for intersectional analysis can point towards pos-
sible approaches that bring greater attention to emergent forms of discrimination.

There is a need for new strategies or methods for showing discrimination that do not rely on
direct comparisons, as it may be so specific — or personalized - that any comparisons become
meaningless (see e.g. Marcat-Bruns, 2018). In relation to intersectional discrimination in the
EU, Marcat-Bruns (2018: 49) argues that ‘more efficient institutional monitoring” is required,
and we agree that this is the case in relation to emergent forms of discrimination also. Fred-
man (2016: 8) argues that intersecting relationships of power can be analyzed and counteract-
ed by four dimensions: “(i) the need to redress disadvantage, (ii) the need to address stigma,
stereotyping, prejudice and violence, (iii) the need to facilitate voice and participation; and (iv)
the need to accommodate difference and change structures of discrimination.” We argue that
these arguments for improvements based on intersectional theories of equality can inspire
countermeasures for emergent forms of algorithmic discrimination. As above, the second
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point may be difficult in the case of complexly intersectional or emergent forms of algorith-
mic discrimination since they are so hard to identify because they do not provoke a socially
recognizable form of stigmatization. However, the other dimensions can be readily extended
to emergent algorithmic discrimination. This starts by ensuring that anti-discrimination insti-
tutions and officers are attentive to the possibilities of emergent discrimination. Thus, possi-
bilities for challenging algorithmic verdicts and demands for redress need to be available to all,
regardless of belonging to a specific protected group. Yet, this will only be possible via broad
anti-discrimination logics and protections, that operate independently of specific protected
grounds, for example by embracing provisions such as Article 14 of the ECHR that prohibits
discrimination on the basis of any possible ‘other status.’ Learning from arguments raised
about amending anti-discrimination protections to encompass intersectional discrimination,
there should be recognition of “the risks of compartmentalization generated by the existence
of [specific] grounds for discrimination” (Marcat-Bruns, 2018: 48). In turn, this will contribute
to the third dimension, to increase participation and voice, not only for representatives of cer-
tain groups, but for all who may be impacted by discriminatory processes. Anti-discrimination
officers working in the field of algorithmic profiling should work less in the name of particular
groups but towards broader dimensions of equality. Apart from legally institutionalized forms
of voice, ideally practices like participatory design can raise awareness of complex forms of
discrimination.

This would also conform to Fredman’s (2016: 80) suggestion “that in designing proactive
measures, groups should be defined not merely in terms of their status markers, but with
reference to the particular aims of equality.” Fredman (2016: 66) continues that “new intersec-
tional groups should be recognized in their own right,” and argues for entirely new grounds for
discrimination — an argument that could also be applied to emergent forms of discrimination,
provided they can be identified. Following Crenshaw’s (1989) seminal piece there was wide
recognition and acceptance, including within the judiciary, of intersectional forms of discrimi-
nation (see e.g. Marcat-Bruns, 2018). Drawing attention to the possibilities of emergent forms
of discrimination in algorithmic profiling in this way may also contribute towards a rethinking of
anti-discrimination approaches, particularly when they connect to exclusion and marginaliza-
tion: “this recognition might narrow the focus on those who are most often disenfranchised at
the intersection of multiple forms of subordination” (Marcat-Bruns, 2018: 47, citing Crenshaw).
Moreover, the existing safeguards for the legally encoded protected groups need to be amelio-
rated. Crenshaw writes that such simple lists are not grounded in a bottom-up commitment to
improve the substantive conditions for those who are victimized by the interplay of numerous
factors. Instead, the dominant message of anti-discrimination law is that it will regulate only
the limited extent to which race or sex interferes with the process of determining outcomes
(Crenshaw 1998, 151). This insight can be carried over to algorithmic judgment as well. It might
help to construct safeguards for protected grounds in a way that reflects that discrimination
might not be experienced by all members (e.g. all women), but only some. This would help
wherever new emergent forms of discrimination include members of protected groups or cat-
egories.

Another important approach to diagnosing and protecting against emergent forms of discrim-
ination comes from the post-colonial view that practices of control and power have been de-
veloped in complex back-and-forth traffic between the West and its colonies, and that have
always included data gathering and processing (Foucault, 2003; Legg, 2007; Thatcher et al.,
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2016). Increasing global flows of data, and the relative ease to tap into them, has made algo-
rithmic profiling an important tool that extends the reach of states’ institutions beyond their na-
tional borders. The 'Five-Eyes’ spying collaboration of the US and four Commonwealth states
including the UK, imports the British colonial legacy into the very structure of the internet
(Mann and Daly, 2019). Thus, when new criteria are formed through algorithms, they have to be
assessed against the backdrop of a global surveillance system that transports its own norms
and processes of suspicion. Therefore, post-colonial attention to (in)visibilities and marginali-
zation is important, especially regarding algorithmic profiling that is used to protect borders,
migration and other ‘outsides’ (Adey, 2012; Monahan, 2017). As Mann and Daly (2019) show,
algorithmic profiling continues many of the colonial practices of creating margins, outsides,
and invisibilities of excluded subjects. For example, data-based border controls have become
decisive in the processing of migration, asylum requests, and the ensuing actions like moving
people to detention camps (Mann and Daly, 2019). Here, the verdicts of algorithmic profiling
are directly related to exertions of power. These, then, are further instances where seemingly
harmless data are directly invested with powerful measures that are hard to challenge. Further,
as Monahan (2017: 202) argues, these types of marginalizing surveillance produce new forms
of “exclusionary invisibility” where algorithmic profiling is aimed at persons who are hardly vis-
ible, and who often do not fall under the scope of existing protections. This social invisibility is
mirrored and augmented if the emergent categories are also ‘invisible’ from the point of view
of existing anti-discrimination protection. It becomes an invisible production of invisibilities.

An important cue to analyse newly created categories is the question of whether they enforce,
facilitate, or legitimise, such exclusionary invisibilities. Thus, the fight against emergent forms
of discrimination through anti-discrimination protections runs the risk of continuing the coloni-
al practices of providing safeguards by creating exclusions. Here we are making the dynamics
of exclusionary invisibility, in both algorithmic profiling, and anti-discrimination logics, more
visible. There is a need for further research in order to make such invisibilities visible. This
may include algorithmic accountability and auditing initiatives that seek to identify when, why,
and how, emergent discrimination is occurring, yet opening the ‘black-box’ (Pasquale, 2015;
Amoore, 2011) is likely to be challenging. Perhaps one way of doing so, and aligned with cur-
rent movements in the field of Artificial Intelligence (Al), is incorporating such post-colonial
sensibilities for power structures into the development of ethical frameworks for Al, and specif-
ically into measures of ‘fairness, accountability and transparency’, although we acknowledge
critiques of “ethics washing” as a way to side-step hard law and regulation (Wagner, 2018).
However, a more successful route for implementing such attention to invisible shifts of power
might be in social and political forms of oversight and potential new legislation that needs to
address which forms of data should be allowed for algorithmic profiling and thus be scruti-
nized, and which actions should or should not be invested with the power that algorithmic
profiling creates.
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Conclusion

In this article, we have analysed algorithmic profiling as a process of knowledge construc-
tion from large sets of data that often bear no direct relation to the protected grounds of an-
ti-discrimination laws. Still, they form complex intersectional and non-representative catego-
ries that may bring about systematic disadvantage for a hitherto unnoticed group of people.
We term this process as emergent discrimination. There are limits to the applicability of both
data protection and anti-discrimination law in responding to new forms of discrimination that
emerge, or that do not pertain directly to protected identities, but rather represent patterns that
have little or no intuitive meaning to human practice. However, we have shown that the intuition
of anti-discrimination law can be carried over to these new forms of discrimination. Inspired
by intersectional reconceptualizations of justice and the ensuing proposals for institutional
amendments, we have shown potential remedies. Furthermore, post-colonial attention to (in)
visibilities is required to counter the risk of continuing marginalization. These insights should
inform ethical assessments, design processes, and other proactive protective measures in
creating and applying algorithmic profiling.
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